Средние - определение. Что такое Средние
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Средние - определение

Средние десантные корабли проекта 770; Средние десантные корабли проекта 773
  • Высадка десанта
Найдено результатов: 635
Средние      

средние значения, числовая характеристика группы чисел или функций.

1) Средним для данной группы чисел x1, x2,..... xn называется любое число, заключённое между наименьшим и наибольшим из них. Наиболее употребительными С. являются: Арифметическое среднее

,

,

,

.

Если все числа xi (i = l,2,..., n) положительны, то можно для любого α ≠ 0 определить степенное С.

частными случаями которого являются арифметическое, гармоническое и квадратичное С., именно: s (а равняется a, h и q соответственно при α = 1, -1 и 2. При α → 0 степенное С, sα стремится к геометрическому С., так что можно считать s0 = g. Важную роль играет неравенство sαsβ, если α ≤ β, в частности

h g a q.

Арифметическое и квадратичное С. находят многочисленные применения в теории вероятностей, математической статистике, при вычислении по методу наименьших квадратов и др. Указанные выше С. могут быть получены из формулы

,

где f-1(η) - функция, обратная к f (ξ) (см. Обратная функция), при соответствующем подборе функции f (ξ). Так, арифметическое С. получается, если f(ξ) = ξ, геометрическое С. - если f (ξ) = log ξ, гармоническое С. - если f (ξ) = 1/ξ, квадратичное С. - если f (ξ) = ξ2.

Наряду со степенными С. рассматривают взвешенные степенные С.

в частности при α = 1,

,

которые переходят в обыкновенные степенные С. при р1 = р2 =... = pn. Взвешенные С. особенно важны при математической обработке результатов наблюдений (см. Наблюдений обработка), когда различные наблюдения производятся с разной точностью (с разным весом).

2) Арифметико-геометрическое среднее. Для пары положительных чисел а и b составляются арифметическое С. a1 и геометрическое С. g1. Затем для пары a1, g1 снова находятся арифметическое С. a2 и геометрическое С. g2 и т.д. Общий предел последовательностей an и gb, существование которого было доказано К. Гауссом, называется арифметико-геометрическим С. чисел а и b; он важен в теории эллиптических функций.

3) Средним значением функции называется любое число, заключённое между наименьшим и наибольшим её значениями. В дифференциальном и интегральном исчислении имеется ряд "теорем о среднем", устанавливающих существование таких точек, в которых функция или её производная получает то или иное среднее значение. Наиболее важной теоремой о С. в дифференциальном исчислении является теорема Лагранжа (теорема о конечном приращении): если f (x) непрерывна на отрезке [а, b] и дифференцируема в интервале (а, b), то существует точка с, принадлежащая интервалу (а, b), такая, что f (b) - f (a) = (b-a) f'(c). В интегральном исчислении наиболее важной теоремой о С. является следующая: если f (x) непрерывна на отрезке [а, b], а φ(x) сохраняет постоянный знак, то существует точка с из интервала (а, b) такая, что

.

В частности, если φ(x) = 1, то

.

Вследствие этого под средним значением функции f (x) на отрезке [а, b] обычно понимают величину

.

Аналогично определяют среднее значение функции нескольких переменных в некоторой области.

СРЕДНИЕ      
см. Арифметическое среднее, Гармоническое среднее, Геометрическое среднее, Квадратичное среднее.
СРЕДНИЕ ГОРНЫЕ ПОРОДЫ         
  • Андезит
магматические горные породы, средние по составу между кислыми и основными породами, содержат 53-64% SiO2 (андезиты, диориты и др.).
Средние века         
  • альт=
  • слева
  • альт=
  • англосаксами]]
  • альт=
  • Кристоф Келлер]]
  • «[[Витрувианский человек]]» [[Леонардо да Винчи]]
  • [[Доменико ди Микелино]]. Божественная комедия освещает Флоренцию. 1465. Фреска. Собор [[Санта-Мария-дель-Фьоре]]
  • Европа в 1328 году
  • Европа в 1430-е
  • Европа в 1470-е
  • Карла Великого]].
  • Политическая карта Европы на 450 год.
  • Расширение Франкского государства в 481—814 годах.
  • Территория Священной Римской империи в 962—1806 годы
  • [[Жанна д'Арк]], миниатюра второй половины XV века
  • Григорием I]]
  • Великого переселения народов]] IV—VII веков.
  • Образ школы в XIV веке
  • [[Омейядский халифат]], 661–750}}
  • Остромирова евангелия]] (1057)
  • Расширение и падение Османской империи (1300—1923)
  • Теодериха]]. [[Милан]], ок. 491—501.
  • Равенне]]
  • альт=
  • альт=
ПЕРИОД ИСТОРИИ, СЛЕДУЮЩИЙ ЗА АНТИЧНОСТЬЮ И ПРЕДШЕСТВУЮЩИЙ НОВОМУ ВРЕМЕНИ
Средневековье; Средние Века; Эпоха Средневековья; Средневековый период; Medieval; Medium aevum; Средневековое государство
Сре́дние века́, или Средневеко́вье, — период истории Европы и Ближнего Востока, следующий после Античности и предшествующий Новому времени. Историки предлагали разные хронологические рамки для этого периода, основными из которых стали 500—1500 гг.
Средние века         
  • альт=
  • слева
  • альт=
  • англосаксами]]
  • альт=
  • Кристоф Келлер]]
  • «[[Витрувианский человек]]» [[Леонардо да Винчи]]
  • [[Доменико ди Микелино]]. Божественная комедия освещает Флоренцию. 1465. Фреска. Собор [[Санта-Мария-дель-Фьоре]]
  • Европа в 1328 году
  • Европа в 1430-е
  • Европа в 1470-е
  • Карла Великого]].
  • Политическая карта Европы на 450 год.
  • Расширение Франкского государства в 481—814 годах.
  • Территория Священной Римской империи в 962—1806 годы
  • [[Жанна д'Арк]], миниатюра второй половины XV века
  • Григорием I]]
  • Великого переселения народов]] IV—VII веков.
  • Образ школы в XIV веке
  • [[Омейядский халифат]], 661–750}}
  • Остромирова евангелия]] (1057)
  • Расширение и падение Османской империи (1300—1923)
  • Теодериха]]. [[Милан]], ок. 491—501.
  • Равенне]]
  • альт=
  • альт=
ПЕРИОД ИСТОРИИ, СЛЕДУЮЩИЙ ЗА АНТИЧНОСТЬЮ И ПРЕДШЕСТВУЮЩИЙ НОВОМУ ВРЕМЕНИ
Средневековье; Средние Века; Эпоха Средневековья; Средневековый период; Medieval; Medium aevum; Средневековое государство
I Сре́дние века́

средневековье, принятое в исторической науке обозначение периода всемирной истории, следующего за историей древнего мира (См. Древний мир) и предшествующего новой истории (См. Новая история). Понятие С. в. (лат. medium aevum, буквально - средний век) появилось в 15-16 вв. у итальянских историков-гуманистов (Ф. Бьондо и др.), утвердилось в науке с 18 в. Марксистская историческая наука рассматривает С. в. как эпоху зарождения, развития и разложения Феодализма, рубежом между древностью и С. в. считает крушение рабовладельческой Римской империи (условная дата - 476), между С. в. и новой историей - Английскую буржуазную революцию 17 в. Термин "С. в.", возникший применительно к истории стран Западной Европы, употребляется и по отношению к др. регионам мира (хотя эпоха средневековья и время существования в них феодализма не всегда совпадают). Наука, изучающая историю С. в., - медиевистика.

II Сре́дние века́ ("Сре́дние века́",)

научные сборники по истории средних веков. Издаются Институтом всеобщей истории АН СССР. Выходят с 1942 в Москве. Публикуются исследовательские статьи, рецензии и аннотации, библиографические обзоры, переводы средневековых источников. Имеются разделы "Медиевистика в высшей школе", "Хроника". До 1976 вышло 39 выпусков. Тираж (1975) 1750 экз.

СРЕДНИЕ ВЕКА         
  • альт=
  • слева
  • альт=
  • англосаксами]]
  • альт=
  • Кристоф Келлер]]
  • «[[Витрувианский человек]]» [[Леонардо да Винчи]]
  • [[Доменико ди Микелино]]. Божественная комедия освещает Флоренцию. 1465. Фреска. Собор [[Санта-Мария-дель-Фьоре]]
  • Европа в 1328 году
  • Европа в 1430-е
  • Европа в 1470-е
  • Карла Великого]].
  • Политическая карта Европы на 450 год.
  • Расширение Франкского государства в 481—814 годах.
  • Территория Священной Римской империи в 962—1806 годы
  • [[Жанна д'Арк]], миниатюра второй половины XV века
  • Григорием I]]
  • Великого переселения народов]] IV—VII веков.
  • Образ школы в XIV веке
  • [[Омейядский халифат]], 661–750}}
  • Остромирова евангелия]] (1057)
  • Расширение и падение Османской империи (1300—1923)
  • Теодериха]]. [[Милан]], ок. 491—501.
  • Равенне]]
  • альт=
  • альт=
ПЕРИОД ИСТОРИИ, СЛЕДУЮЩИЙ ЗА АНТИЧНОСТЬЮ И ПРЕДШЕСТВУЮЩИЙ НОВОМУ ВРЕМЕНИ
Средневековье; Средние Века; Эпоха Средневековья; Средневековый период; Medieval; Medium aevum; Средневековое государство
(средневековье) , принятое в исторической науке обозначение периода, следующего за историей древнего мира и предшествующего новой истории. В науке датируется кон. 5 - сер. 17 вв.
Средние горные породы         
  • Андезит

магматические горные породы, содержащие 56-65\% кремнезёма. К ним относятся главным образом полевошпатовые породы с небольшой примесью железо-магнезиальных минералов (пироксена, роговой обманки, реже биотита); среди полевых шпатов характерны средние Плагиоклазы (олигоклаз, андезин). По веществ, составу среди С. г. п. различают натриевый (диориты, андезиты, порфириты) и калиевый (сиениты, трахиты) ряды. С. г. п. распространены главным образом среди эффузивных пород, в которых андезиты и порфириты преобладают над трахитами и порфирами; интрузивные породы (диорит, сиенит) распространены значительно меньше. См. также Магматические горные породы.

Средние магматические горные породы         
  • Андезит
Сре́дние магмати́ческие го́рные поро́ды (среднекремнеки́слые магмати́ческие го́рные поро́ды) — отряд магматических горных пород, выделяемый по содержанию кремнезёма (SiO2), которое варьируется в пределах 52—63 %. Породообразующими минералами отряда являются калиевые полевые шпаты, средние плагиоклазы, и роговая обманка, нередко присутствует авгит.
СРЕДНИЕ ВЕЛИЧИНЫ         
в статистике - обобщают количественные характеристики элементов массового процесса (устраняют их индивидуальные различия, выявляют общие условия и закономерности). Применяются для характеристики уровня явлений, его развития во времени, сравнения двух или нескольких уровней; производства расчетов и оценок в связи с прогнозированием, проектированием и т. п. Преимущественно используются: средние арифметические, средние геометрические, средние гармонические, средние квадратичные, а также мода и медиана.
Средние величины         

в статистике, обобщённые типические характеристики качественно однородных и количественно отличающихся друг от друга величин. К. Маркс писал: "В каждой отрасли промышленности индивидуальный рабочий, Петр или Павел, более или менее отклоняется от среднего рабочего. Такие индивидуальные отклонения, называемые на языке математиков "погрешностями", взаимно погашаются и уничтожаются, раз мы берем значительное число рабочих" (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 23, с. 334). Важная роль, которую играют С. в., видна, например, из того, что средний труд входит в определение стоимости; в анализе нормы прибыли большое значение имеет средний органический состав капитала; при определении амортизации исходят из среднего срока службы данного вида оборудования и т.д. Существуют различные типы С. в. (см. Средние). При малой колеблемости индивидуальных величин выбор формы средней не имеет существенного значения, при большой колеблемости он диктуется природой объекта. Например, при вычислении средней производительности труда необходимо учитывать её прямую пропорциональность количеству произведённой продукции и обратную пропорциональность затрате рабочего времени на её выработку. Поэтому при нахождении средней из данных о дневной выработке рабочих вычисляют среднюю арифметическую, а при определении средней по данным о затрачиваемом ими на единицу продукции времени - среднюю гармоническую. При вычислении среднегодового темпа роста продукции, населения и т.д. исходят из того, что отношение окончательно достигнутого уровня к начальному (в данном ряде) равно произведению величин вида 1 + ti, где ti - темп роста для отдельного (i-го) года. Поэтому из этих величин определяют среднюю геометрическую и из неё вычитают 1 для получения среднего темпа.

С. в. следует различать от огульных средних, неправомерно используемых для характеристики совокупности разнородных единиц. Впервые это различие показал В. И. Ленин в работе "Развитие капитализма в России" (1896-99). В противоположность построениям, опиравшимся на антинаучное использование средних, он доказал, что разнородная масса крестьянских хозяйств не может характеризоваться одной средней, поскольку она в этом случае вместо обобщённой типической характеристики всех хозяйств превращается в огульную среднюю (см. Статистические группировки).

Со С. в. тесно связан закон больших чисел (см. Больших чисел закон). При наличии случайного элемента в индивидуальных значениях он оказывается в С. в. погашенным тем в большей мере, чем больше количество охватываемых средней индивидуальных величин.

Лит. см. при ст. Статистика.

Википедия

Средние десантные корабли проектов 770, 771 и 773

Средние десантные корабли проекта 770 (771,773) (по кодификации НАТО — Polnocny) — серия специализированных десантных кораблей, построенная в 1960-х — 1970-х гг. для СССР на Северной верфи в Гданьске (Польша). До 1963 года классифицировались как танкодесантные корабли.

Относятся к кораблям 3-го ранга.